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Abstract.-Systems with genetic variation for the primary sex ratio are important for testing sex-ratio theory and for 
understanding how this variation is maintained. Evidence is presented for heritable variation of the primary sex ratio 
in the harpacticoid copepod Tigriopus californicus. Variation in the primary sex ratio among families cannot be 
accounted for by Mendelian segregation of sex chromosomes. The covariance in sex phenotype between full-sibling 
clutches and between mothers and offspring suggests that this variation has a polygenic basis. Averaged over four 
replicates, the full-sibling heritability of sex tendency is 0.13 + 0.040; and the mother-offspring heritability of sex 
tendency is 0.31 + 0.216. Genetic correlations in the sex phenotype across two temperature treatments indicate large 
genotype-by-temperature interactions. Future experiments need to distinguish between zygotic, parental, or cytoplasmic 
mechanisms of sex determination in T. californicus. 
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sex determination, primary sex ratio, temperature-dependent sex determination, Tigriopus californicus. 

Received September 28, 2001. Accepted June 10, 2002. 

The demonstration of heritable genetic variation for the 
primary sex ratio is important from both a theoretical and an 
experimental perspective. From a theoretical perspective, 
Fisher's (1930) adaptive explanation of the primary sex ratio 
is contingent on the supply of genetic variation for the pri- 
mary sex ratio. From an experimental perspective, organisms 
with genetic variation for the primary sex ratio are necessary 
for testing Fisher's theory and for determining the overall 
importance of frequency-dependent (Fisherian) selection in 
shaping the evolution of the primary sex ratio (Bull and Char- 
nov 1988). Hence, in sex-ratio theory there is a general need 
to demonstrate that heritable variation of the primary sex 
ratio does in fact exist (Bull et al. 1982a). 

There are two main types of sex-determing mechanisms: 
genotypic (GSD) and environmental (ESD) sex determination 
(Charnov 1982; Bull 1983). GSD includes sex chromosomes 
and multiple-factor and polygenic mechanisms where sex is 
predominantly determined by an individual's genotype (Bull 
1983). In contrast, under ESD, an individual's sex is pre- 
dominantly determined in response to an environmental fac- 
tor (Bull 1983; Adams et al. 1987). Most ESD mechanisms 
exhibit some genetic effects on sex determination, likewise, 
many GSD mechanisms may be affected by environmental 
influences (Bull 1983). Thus, the distinction between these 
two categories is not always clear. 

In sex-ratio theory, it is important to distinguish between 
the sex-determining mechanism and the genes responsible 
for generating variation in the primary sex ratio, because 
these are not necessarily one and the same. In the haplodi- 
ploid hymenopterans (Hamilton 1967), sex is determined by 
an individual's ploidy, but the genes that determine whether 
an egg is fertilized are expressed in the mother (Orzack and 
Gladstone 1994). In heterogametic mechanisms, sex is de- 
termined by an individual's complement of sex chromosomes 
(Bull 1983). However, sex-linked genes that distort the Men- 
delian segregation of sex chromosomes and their autosomal 
suppressors are expressed in the heterogametic parent (Var- 

andas et al. 1997; Carvalho et al. 1998). In haplodiploid and 
sex chromosome mechanisms, the genetic variation for the 
primary sex ratio is therefore under parental control (Bulmer 
and Bull 1982). 

In contrast, in the threshold model, sex is determined in 
the offspring by the cumulative effects of one or many loci 
and/or an environmental deviation relative to some threshold 
value (Roff 1996, 1997). Individuals with a value below the 
threshold develop into one sex, and individuals above the 
threshold develop into the other sex (Bulmer and Bull 1982). 
Genotypes vary in their complement of sex-determining al- 
leles at the various loci and therefore in their genetic tendency 
to develop into either a male or a female. In this case, the 
sex-determining mechanism also generates the variation in 
the primary sex ratio, and the latter is said to be under zygotic 
control (Bulmer and Bull 1982). Polygenic and/or environ- 
mental systems of sex determination are often described using 
the threshold model under the assumption that the genetic 
variation in the primary sex ratio is under zygotic control 
(Bull et al. 1982a; Lester et al. 1989; Janzen 1992; Premoli 
et al. 1996). 

Variation in the primary sex ratio is intimately connected 
with the sex-determining mechanism. Early studies showed 
that sex chromosome systems contained little, if any, genetic 
variation for the primary sex ratio (Falconer 1954; Edwards 
1970; Bar-Anan and Robertson 1975; Foster and McSherry 
1980; Toro and Charlesworth 1982; Hohenboken et al. 1988). 
The potential for variation in the primary sex ratio in sex 
chromosome systems is believed to be limited due to the 
stability of Mendelian transmission (Williams 1979). In con- 
trast, genetic variation for the primary sex ratio has been 
documented in numerous taxa with polygenic and/or envi- 
ronmental mechanisms of sex-determination (Ar-Rushdi 
1958; Bulnheim 1978a,b; Conover and Kynard 1981; Bull et 
al. 1982a; Conover and Heins 1987; Lester et al. 1989; Janzen 
1992; Premoli et al. 1996). 

The quantification of the genetic variation in the primary 
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sex ratio depends on the relative number of loci involved 
(few vs. many) and their effects on sex-determination (major 
vs. minor). Mechanisms with few loci have a relatively simple 
characterization and their evolution can be treated exactly 
(Bull 1983; Basolo 1994). In contrast, polygenic mechanisms 
are best analyzed using quantitative genetics (Bulmer and 
Bull 1982). Likewise, the characterization of the genetic com- 
ponent in systems of ESD depends on whether it is multiple 
factor (Conover and Kynard 1981; Conover and Heins 1987) 
or polygenic (Bull et al. 1982a; Janzen 1992). 

Bull (1983) lists three criteria that suggest the presence of 
a polygenic mechanism of sex determination: (1) a large be- 
tween-family sex-ratio variance; (2) paternal and maternal 
effects on family sex ratio; and (3) a sex-ratio response to 
selection. Although these criteria are not found in systems 
with sex chromosomes, in practice it is difficult to distinguish 
between multiple factor and polygenic systems of sex deter- 
mination (Bull 1983). Fortunately, quantitative genetics can 
still furnish a useful description of the short-term evolution- 
ary properties of a sex-determining system as long as the loci 
are additive in their effects. 

The application of quantitative genetics to any sex-deter- 
mining system requires the investigator to know the mode 
of control. Under parental control, the clutch sex ratio of the 
offspring is a parental trait with a relatively continuous dis- 
tribution between zero and one for large clutches. In contrast, 
under zygotic control the sex phenotype (female, male) is an 
offspring trait with a dichotomous distribution (0, 1) that 
belongs to the offspring. The distinction between the two 
modes of control is an important one because it dictates the 
experimental design and the statistical model for estimating 
quantitative genetics parameters. For example, under parental 
control, a design with multiple full-sibling clutches provides 
an estimate of the repeatability of the primary sex ratio (a 
nongenetic character; Falconer 1989). In contrast, under zy- 
gotic control, the same design allows one to estimate the 
heritability of the primary sex ratio (Bull et al. 1982a). 

In the previous example, the "heritability of the primary 
sex ratio" is a confusing choice of terminology. Under zy- 
gotic control, the primary sex ratio in a family actually rep- 
resents the expected sex phenotype of all the offspring in 
that family. By analogy, it would be similarly misleading to 
speak of the "heritability of the population mortality rate" 
because the underlying genes are the property of individuals, 
not populations. To avoid confusion, we will use the "her- 
itability of the primary sex ratio" versus the "heritability of 
the sex tendency" to distinguish between parental versus 
zygotic modes of control. Likewise, when referring to sys- 
tems with zygotic control we prefer the term "sex pheno- 
type" to "clutch sex ratio" because the latter has conno- 
tations of parental control. 

This study investigates polygenic variation in the primary 
sex ratio in the harpacticoid copepod, Tigriopus californicus, 
which inhabits the supralittoral zone of the West Coast of 
North America. Its splash-pool habitat is characterized by 
extreme fluctuations in temperature (5-35?C) and salinity (0- 
100 ppt) between winter and summer (Dybdahl 1995; Albert 
et al. 2001). 

Following sexual maturity, females mate once (Burton 
1985) and produce up to 12 clutches (40-100 offspring per 

clutch; Haderlie et al. 1980) over their lifetime (- 70 days 
in the laboratory; unpubl. data). In the field, reproduction 
occurs year-round and populations are capable of rapid 
growth (Vittor 1971; Powlik 1998). In the laboratory the 
average generation time is approximately three weeks at 20?C 
(Haderlie et al. 1980; Webb and Parsons 1988). 

Belser (1959) claimed that T. californicus was the first 
reported example of polygenic sex determination in the lit- 
erature (Ar-Rushdi 1958). A cytological assay found no ev- 
idence of sex chromosomes (Ar-Rushdi 1963). Later work 
showed that the primary sex ratio of this organism was also 
affected by temperature (Egloff 1966; Vittor 1971; Voordouw 
and Anholt 2002). Egloff (1966) pointed out that seasonal 
variation in splash-pool temperatures may cause fluctuations 
in the primary sex ratio of natural populations of T. califor- 
nicus. The response of the population to these fluctuations is 
dependent on the supply of genetic variation for the primary 
sex ratio. A proper characterization of this variation is there- 
fore a necessary point of departure for understanding its role 
in shaping the evolution of the primary sex ratio in T. cali- 
fomicus. 

In this study we define the primary sex ratio as the pro- 
portion of males at the time of sex determination. Our primary 
objective is to provide additional evidence for polygenic var- 
iation in the primary sex ratio in T. californicus using the 
criteria outlined by Bull (1983). In the first experiment we 
show that families of T. califoricus exhibit extrabinomial 
variation in the proportion of males. In the second experiment 
we show that family accounts for a substantial portion of the 
total variance in sex phenotype and that the proportion of 
males is correlated between split clutches (of full-siblings) 
reared at two different temperature treatments. In the third 
experiment we show that the proportion of males in families 
of full-siblings is correlated between generations. 

Our second objective is to estimate heritabilities and ge- 
netic correlations of the sex phenotype in T. californicus. 
Assuming zygotic control, we use a polygenic threshold mod- 
el (Bulmer and Bull 1982; Roff 1997) to estimate the full- 
sibling and the mother-offspring heritability of sex tendency 
in experiments 2 and 3, respectively. In experiment 2, we 
also estimate the full-sibling genetic correlation in sex phe- 
notype across the two temperature treatments. 

MATERIALS AND METHODS 

Experiments 1-3: Sex Identification and the Larval 
Mortality Correction 

In all three experiments we sexed individuals once they 
reached sexual maturity (20-30 days after hatching). At this 
stage of the life cycle, males are easily distinguishable from 
females by their enlarged geniculate antennae. In cases where 
an individual's sex could not be identified at the time of assay 
(i.e., dead, missing, or sexually immature individuals), the 
individual was assigned to the less common sex for that fam- 
ily. Assigning unidentified individuals to the less common 
sex is a conservative approach for detecting variation in the 
primary sex ratio among families (Bull and Vogt 1979; Con- 
over and Kynard 1981; Bull et al. 1982a). This protocol will 
hereafter be referred to as the "larval mortality correction." 
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Experiment 1: Variation in the Primary Sex Ratio 

In the summer of 1999, we reared and mated 60 T. cali- 
fornicus females (F1) whose offspring comprised the second 
laboratory-born (F2) generation of field-captured individuals 
from several locations around Victoria and Bamfield, British 
Columbia. The F2 offspring of these Fl females will hereafter 
be referred to as a "family." 

After the F2 generation hatched we randomly selected 
groups of 20 full-siblings from each of the 60 families. We 
assigned each family of 20 full-siblings to a 24-well tissue 
culture plate. Families were nested within plates because ran- 
domizing 1200 F2 individuals across 60 plates was not lo- 
gistically feasible. Within this family plate, each full-sibling 
was allocated to its own well with 2.5 ml of filtered seawater 
and reared on a diet of Isochrysis galbana cells and Tetramin 
(TetraSales) flakes. Plates were stored in an incubator at a 
temperature of 20?C with no light. Families were assayed for 
the proportion of males after 18 days. 

Mortality in experiment 1.-There was almost no mortality 
in the first experiment (mortality < 1%), therefore we did 
not use the larval mortality correction. 

Experiment 2: Full-Sibling Design 
General outline.-Experiment 2 consists of two separate 

experiments that are similar in design but separated in time. 
One experiment was conducted in the summer of 2000 and 
will hereafter be referred to as the "summer assay". The 
other experiment was conducted in the fall of 2000 and will 
hereafter be referred to as the "fall assay". A more detailed 
description of the experimental protocol is given in Voor- 
douw and Anholt (2002), where the summer and fall assay 
are referred to as experiment 1 and 2, respectively. 

Summer assay.-We collected samples of T. californicus 
from splash pools located in Arbutus Cove (48028'36" N, 
123?18'00" W), Victoria, British Columbia, on 31 May 2000. 
We selected 60 gravid females from our splash-pool samples 
and tried to obtain two clutches for each female. For the 
summer assay we successfully removed two clutches from 
45 females. 

Each clutch (two per female) was split into two random 
groups of 20 nauplii (full-siblings). One group was assigned 
to a cool (15?C) and the other to a warm (22?C) treatment. 
These temperatures are representative of field conditions and 
also reflect a compromise between slow development and 
high mortality at cool and warm temperatures, respectively. 

Each group of 20 nauplii was reared in a plastic 30-dram 
vial on a diet of L. galbana cells and Tetramin flakes. Vials 
were placed in a constant temperature incubator (either 15?C 
or 22?C) with no light. Individuals were assayed for their sex 
phenotype after 20 to 30 days (depending on the temperature). 

Fall assay. We used the offspring from the summer assay 
to create two laboratory populations on 19 July 2000 (dis- 
cussed in more detail in Voordouw and Anholt 2002). Each 
population was stocked with offspring from 20 different fe- 
males. Both populations were cultured in incubation refrig- 
erators on a diet of Tetramin flakes without light for 4 months. 
Over this period of time the two populations went through 
four to six generations. 

We obtained a sample of 50 gravid females from each 

population on 26 October 2000. As in the summer assay, we 
tried to isolate two clutches for each female. We obtained 
two clutches for 36 females in one population and for 20 
females in the other population. We combined the two pop- 
ulations for a total sample size of 56 females (with two clutch- 
es per female) in the fall assay. 

As in the summer assay, each clutch (two per female) was 
split into two groups of 20 nauplii (full-siblings). Each group 
was subsequently assigned to either the 15?C or the 22?C 
treatment. Individuals were assayed for their sex phenotype 
after 20 to 30 days (depending on the temperature). 

Mortality in experiment 2.-For the summer assay, survi- 
vorship was 95.6% at the 15?C treatment and 84.1% at the 
22?C treatment. The larval mortality correction in the 22?C 
treatment of the summer assay eliminated most of the vari- 
ance in sex phenotype among families. For the fall assay, 
survivorship at 15?C and 22?C was 96.2% and 96.8%, re- 
spectively. Hence, the larval mortality correction had little 
effect on the variance in sex phenotype among families in 
the fall assay. 

Experiment 3: F1-F2 Family Design 
General outline.-In experiment 3 there are three genera- 

tions: the field, Fl, and F2. We assayed the proportion of 
males in full-sibling families in the F1 and F2 generations. 
We refer to the females that produced the F1 and F2 generation 
as "field females" and "mothers," respectively. 

Field females and the assay of F1 families.-In the summer 
of 2000, we took a sample of copepods from Arbutus Cove, 
Victoria, and selected 20 gravid females. For each field fe- 
male we isolated three clutches of F1 offspring. Nauplii from 
the second and third clutch were reared in separate 30-dram 
vials at 15?C with no light. At sexual maturity, we assayed 
the vials to estimate the proportion of males in each F1 family 
of full-siblings. 

Rearing and mating of the mothers.-For each field female 
we used nauplii from the first clutch to obtain the mothers. 
Thirty nauplii were reared in six-well tissue culture plates 
(five nauplii/well) at 15?C with no light. When individuals 
had reached the fourth copepodite stage, we introduced the 
males (i.e., the fathers of the F2 generation). These males 
were taken from the original field sample. Once the fathers 
had clasped a sexually immature mother we allocated each 
couple to a single well in a 24-well tissue culture plate. From 
each field female, we obtained an average of three mothers 
(range = 1-7). Mothers obtained from the same field female 
represent a set of full-sibling sisters. 

Mothers and the assay of F2 families.-For each mated 
mother we obtained at least one clutch of F2 offspring. These 
clutches were reared in separate 30-dram vials at 15?C with 
no light. At sexual maturity, we assayed the vials to estimate 
the proportion of males in each F2 family of full-siblings. 

Mortality in experiment 3.-Unlike experiments 1 and 2, 
survivorship was relatively poor. For the Fl and F2 families, 
only 65% and 67% of all nauplii were recovered as adults. 
We did not use the larval mortality correction, because it 
would have eliminated most of the variation in the proportion 
of males among families. 
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TABLE 1. The family, clutch, and offspring variance components of the sex phenotype in Tigriopus californicus in experiment 2. "Corrected" 
refers to whether the data were adjusted for larval mortality. "Description" refers to the combination of season (S, summer; F, fall) and 
temperature (?C). "1? SR" denotes the primary sex ratio for all the individuals in the sample. Variance components and P-values were obtained 
from a nested ANOVA. 

Variance components P-values 

Corrected Description 1? SR Family Clutch Offspring Total Family Clutch 

no S15 0.545 0.010 0.024 0.215 0.249 0.067 <0.001 
no S22 0.602 0.000 0.032 0.202 0.234 0.522 <0.001 
no F15 0.482 0.019 0.009 0.223 0.251 <0.001 0.001 
no F22 0.548 0.013 0.024 0.213 0.250 0.029 <0.001 
yes S15 0.533 0.008 0.015 0.227 0.249 0.053 <0.001 
yes S22 0.582 0.000 0.022 0.224 0.246 0.839 <0.001 
yes F15 0.494 0.016 0.006 0.230 0.251 <0.001 0.021 
yes F22 0.550 0.010 0.018 0.221 0.248 0.035 <0.001 

Statistical Methods 

Experiment 1: variation in the primary sex ratio 

To compare the observed distribution of the primary sex 
ratio among families with the binomial expectation we used 
a chi-square goodness-of-fit test. To circumvent problems 
with small expected frequencies and excessive Type I error, 
families with six or fewer males (proportion of males - 0.30) 
were grouped and families with 14 or more males (proportion 
of males- 0.70) were grouped. 

Experiment 2: full-sibling design 
Statistical test of family effects and the estimation of vari- 

ance components.-Prior to estimating the heritability of sex 
tendency it is useful to determine whether there is a genetic 
basis to the sex phenotype (Roff 1997). For the full-sibling 
design in experiment 2, rearing two clutches in separate vials 
allows us to separate clutch effects (and all the sources of 
variation contained therein) from family effects (Roff 1986, 
1997). Family should account for a significant proportion of 
the total variance in sex phenotype if this variance has a 
genetic component in T. californicus. 

Following Roff (1997) we used nested ANOVA to estab- 
lish the statistical significance of family and clutch effects 
on the sex phenotype. Family and clutch are modeled as 
random factors and female and male individuals are coded 
as '0' and '1', respectively. Individual offspring were nested 
inside clutches and clutches were nested inside families. The 
nested ANOVA generated three variance components of sex 
phenotype: (1) among-family; (2) among-clutch (within-fam- 
ily); and (3) among-offspring (within-clutch) variance com- 
ponent. These three will hereafter be referred to as the "fam- 
ily," "clutch," and "offspring" variance components of the 
sex phenotype, respectively. In the next section we use these 
variance components to calculate the heritability. 

Full-sibling heritability of sex tendency.-Under zygotic 
control, the sex phenotype can be analyzed using the poly- 
genic threshold model (see introduction; Bull et al. 1982; 
Bulmer and Bull 1982; Roff 1997). The first step is to cal- 
culate the heritability on the observed scale (0, 1 data for 
females vs. males), the heritability of sex phenotype (hol). 
We used the variance components from our nested ANOVA 
and equation 2.30 in Roff (1997) to calculate h2,1: 

h21 = 2[Vfam/(Vfam + Vclutch + Voffspring) (1) 

Here Vfam, Vclutch, and Voffspring correspond to the family, 
clutch, and offspring variance components of sex phenotype. 
Next, we used equation (2.44) in Roff (1997) to calculate the 
heritability on the underlying scale, the heritability of sex 
tendency (h2). 

h2 = ha,lp(l - p)/z2. (2) 
Here p is primary sex ratio for all the individuals in the sample 
(see Table 1) and z is the ordinate on the standardized normal 
curve that corresponds to a probability of p. Approximate 
standard errors for the full-sibling heritability estimates were 
calculated using equation (2.50) in Roff (1997). 

In both the summer and fall assay, our split-clutch design 
allows us to estimate the full-sibling heritability of sex ten- 
dency in T. californicus at each temperature treatment. Thus, 
we have a total of four full-sibling heritability estimates: 
summer assay at 15?C (S15), summer assay at 22?C (S22), 
fall assay at 15?C (F15), and fall assay at 22?C (F22). We 
calculated a combined heritability of sex tendency by taking 
the average of these four estimates and their standard errors. 

The genetic correlation in sex phenotype across two envi- 
ronments.-The same character expressed in two different 
environments can be thought of as two characters that are 
genetically correlated (Falconer 1952). If there are no ge- 
notype-by-environment (G X E) interactions, the character 
is determined by the same set of genes in both environments 
and the genetic correlation is expected to be highly positive. 
Conversely, any genetic correlation across environments that 
is significantly less than one indicates the existence of G x 
E interactions (Yamada 1962). 

In experiment 2, for both the summer and fall assay we 
used a design where groups of 20 full-siblings from the same 
clutch were reared at two different temperature treatments 
(15?C and 22?C). This split-clutch design allows us to eval- 
uate the importance of genotype-by-temperature interactions 
on the offspring's sex phenotype. We used the correlation of 
family means (i.e., the proportion of males for a group of 20 
full-siblings; method 1 of Via 1984) between temperature 
treatments to approximate the standard full-sibling genetic 
correlation in sex phenotype (rm): 

rm = cOVm(15oC, 22?C)/[(Varm(15oC)) (varm(22oC))]12, (3) 

where COVm(15oC,22oC) is the covariance of the family propor- 
tion of males between the two environments (15?C and 22?C) 
and varm(l^5c) and varm(22-c) are the variances of the family 
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proportion of males for each of the two temperature treat- 
ments (Via 1984). This method is an approximation because 
each term in equation (3) contains a within-family error com- 
ponent; however, the observed correlation in sex phenotype 
approaches the true genetic correlation as family size in- 
creases (Via 1984). 

The r2-value from these correlations can be used to esti- 
mate the proportion of genetic variation in the sex phenotype 
that is due to pleiotropy (Via 1984). Confidence limits of the 
genetic correlation were calculated using Tukey's jackknife 
method (Sokal and Rohlf 1981). We did not use the z-trans- 
formation because it excludes confidence limits greater than 
1.0. (Janzen 1992). Note, we did not transform rm to the 
underlying scale of sex tendency; therefore, our estimate 
measures the genetic correlation in the sex phenotype be- 
tween the two temperature environments. 

The larval mortality correction.-For the full-sibling de- 
sign in experiment 2, the statistical significance of family 
and clutch effects on sex phenotype were calculated for the 
original and for the larval mortality corrected data. Likewise, 
we recalculated the four heritability estimates (S 15, S22, F15, 
F22), and the genetic correlations following the larval mor- 
tality correction. 

Experiment 3: F1-F2 family design 

Pooling in F1 and F2 families.-For each field female we 
pooled the second and third clutch (full-siblings) so that the 
average F1 family contained 35 offspring (range = 14-53). 
Mothers obtained from the same clutch (i.e., sisters) are not 
independent. In addition, we have only one estimate of the 
F1 proportion of males for each set of sisters. To avoid pseu- 
do-replication, we pooled all the F2 offspring for each set of 
sisters. After pooling, the average F2 family contained 23 
offspring (range = 2-90). Note, because F2 offspring were 
produced by a set of sisters, each F2 family contains a mix 
of full-siblings and cousins. Three families were lost, so the 
final dataset consisted of the proportion of males for 17 pairs 
of F1-F2 families. 

Covariance in the proportion of males between F1 and F2 
families.-We expect the proportion of males to covary be- 
tween the Fl and F2 families if it has a genetic component. 
The statistical significance of the covariance in the proportion 
of males between F1 and F2 families was determined using 
a standard regression analysis as well as a randomization test. 
In the randomization test we paired the proportion of males 
at random between F1 and F2 families and calculated Pear- 
son's correlation coefficient. We generated an empirical dis- 
tribution of 10,000 of such correlations for comparison with 
the observed correlation. 

Mother-offspring heritability of sex tendency.-For each 
full-sibling family (F1 or F2), the observed proportion of 
males is an estimate of the expected sex phenotype for that 
family. In other words, the proportion of males in a family 
estimates an individual's probability of developing into a 
male (assuming zygotic control). The proportion of males in 
each pair of FI-F2 families are therefore estimates of the 
expected sex phenotype of the mothers and their offspring, 
respectively. 

For each full-sibling family (F1 or F2), we calculated the 
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FIG. 1. The distribution of the proportion of males for 60 families; 
each family consists of 20 offspring. Shown are the expected and 
observed counts. Families with a proportion of males < 0.3 or 
0.7 were lumped because of low expected values. 

ordinate on the standardized normal curve (zi) that corre- 
sponds to the proportion of males in that family (pi). The 
transformed value (zi) approximates an individual's pheno- 
typic value on the underlying scale of sex tendency (Roff 
1986, 1997). These phenotypic values (sex tendencies) are 
normally distributed. After calculating the sex tendencies (zi- 
values) for the mothers (F1 families) and their offspring (F2 
families), analysis proceeds as usual for a normally distrib- 
uted trait (Roff 1986, 1997). 

The heritability of sex tendency (h2) was calculated as 
twice the slope of the mother-offspring regression of sex 
tendency. Because the number of F2 offspring varied con- 
siderably between families (range = 2-90), we repeated the 
analysis after weighting the F2 sex tendency by the square 
root of its family size. Standard errors of heritability esti- 
mates were calculated following Becker (1984). 

RESULTS 

Experiment 1: Variation in the Primary Sex Ratio 

In experiment 1, the primary sex ratio of the population 
(averaged over 60 families with 20 offspring per family) was 
0.54 ? 0.025 and was not significantly different from 0.50 
(P = 0.131). However, the average family contained signif- 
icantly more sons or more daughters than expected from a 
binomial distribution (X2 = 58.5, df = 8, P < 0.001; Fig. 
1). The small excess of 50/50 families (i.e., proportion of 
males = 0.5) in Figure 1 reflects the larval mortality correc- 
tion (i.e., unidentified individuals assigned to the less com- 
mon sex in that family). 

Experiment 2: Full-Sibling Design 
Variance components.-For the summer assay, the family 

variance component in sex phenotype is marginally nonsig- 
nificant at 15?C and not significant at 22?C (Table 1, Fig. 2). 
For the fall assay, the family variance component in sex 
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FIG. 2. The family, clutch, and offspring variance components of the sex phenotype in Tigriopus californicus in experiment 2. The top 
and bottom panels show the original and the larval mortality-corrected data, respectively. S15, summer assay at 15?C; S22, summer 
assay at 22?C; F15, fall assay at 15?C; F22, fall assay at 22?C. 

phenotype is significantly different from zero at both 15?C 
and 22?C (Table 1, Fig. 2). 

The clutch variance component in sex phenotype is sta- 
tistically significant for all four season and temperature com- 
binations (Table 1, Fig. 2). In the summer assay the clutch 
variance component is much larger than the family variance 
component (Table 1, Fig. 2). We did not pool clutches for 
each family because this would have added a substantial non- 
genetic component to our heritability estimates (see Discus- 
sion). After correcting for larval mortality, the family and 
clutch variance components are slightly smaller but the pat- 
tern of significance remains the same (Table 1, Fig. 2). 

Full-sibling heritability of sex tendency.-Averaged over 
the four combinations of season and temperature, the heri- 
tability of sex tendency in T. californicus is 0.13 + 0.040 
(range = 0.00-0.24). The heritability estimates were higher 
in the fall than in the summer assay and were also higher at 
the lower temperature treatment (Table 2). After correcting 

TABLE 2. The full-sibling heritability (h2 + standard error) of sex 
tendency in Tigriopus californicus in experiment 2. "Corrected" and 
"uncorrected" refers to whether the data were adjusted for larval mor- 
tality or not. "Description" refers to the combination of season and 
temperature. N, number of families; n, average number of offspring 
per family; % surv, percent survival to sexual maturity. 

Uncorrected Corrected 
Description N n % surv h2 + SE h2 + SE 

Summer 15?C 45 49.5 93.8 0.12 _ 0.039 0.10 ? 0.033 
Summer 22?C 45 49.2 81.9 0.00 ? 0.017 0.00 ? 0.014 
Fall 15?C 56 36.0 96.0 0.24 + 0.058 0.19 + 0.050 
Fall 22?C 56 36.1 97.1 0.16 + 0.045 0.12 ? 0.039 

Average 0.13 + 0.040 0.10 ? 0.034 

the data for larval mortality the heritabilities are somewhat 
smaller for all combinations of season and temperature, and 
the combined estimate is 0.10 ? 0.034 (Table 2). 

The genetic correlation in sex phenotype across two envi- 
ronments.-For both the fall and summer assay the genetic 
correlation (rm) in sex phenotype across the two temperature 
treatments is positive and significantly different from zero 
(Table 3). In both assays, the upper 95% confidence limit of 
rm does not include +1, indicating the presence of genotype- 
by-temperature interactions. That only 35% of the genetic 
variance in sex phenotype can be attributed to pleiotropy (r2 
= 0.35) suggests that these genotype-by-temperature inter- 
actions are large. Correcting the data for larval mortality does 
not affect this conclusion (Table 3). 

Experiment 3: F1-F2 Family Design 

Covariance in the proportion of males between F1 and F2 
families.-The proportion of males in the F1 family accounts 
for 37.2% of the variation in the proportion of males in the 
F2 families (F1,15 = 8.884, P = 0.009; randomization test, 
P < 0.005). If the regression is weighted by the square root 
of the F2 family size, the Fl proportion of males accounts 
for 43.9% of the variation in the F2 proportion of males (F1,15 
= 11.750, P = 0.004; Fig. 3). 

Mother-offspring heritability of sex tendency.-Following 
transformation to the underlying scale of sex tendency, the 
mother-offspring regression is no longer significant for both 
the weighted (F1,15 = 2.009, P = 0.177) and the unweighted 
analysis (F1,15 = 2.562, P = 0.130). On the scale of sex 
tendency, the heritability estimates are 0.31 + 0.216 and 0.36 
+ 0.225 for the weighted and unweighted analyses, respec- 
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TABLE 3. The genetic correlation (r,) in sex phenotype across the 
two temperature treatments (15?C and 22?C) in Tigriopus californicus 
in experiment 2. "Assay" refers to the summer and fall assay. "Cor- 
rected" refers to whether the clutches were adjusted for larval mor- 
tality. Shown are the sample size (N), the 95% confidence interval of 
r,, the P-value for the null hypothesis that r, = 0, and the percentage 
of the genetic variation in sex phenotype due to pleiotropy (i.e., the 
r2-value). 

% ge- 
Correla- netic 

tion 95% confidence vari- 
Assay Corrected N (rm) interval P ance 

Summer no 55 0.60 0.42-0.78 <0.001 36 
Fall no 76 0.58 0.38-0.79 <0.001 34 
Summer yes 57 0.42 0.20-0.64 0.001 18 
Fall yes 77 0.61 0.43-0.78 <0.001 37 

tively. These h2 estimates will be upwardly biased if there 
are sex-specific mortality differences among families because 
we did not use the larval mortality correction in experiment 3. 

DISCUSSION 

Evidence for Polygenic Variation in the Primary Sex Ratio 
in Tigriopus californicus 

Our experiments provide additional evidence for the ex- 
istence of polygenic variation in the primary sex ratio in T. 
californicus. In the first experiment, the observed variation 
in the primary sex ratio among families cannot be accounted 
for by Mendelian segregation of sex chromosomes. In the 
second experiment, the significant variance component 
among families (fall assay) suggests a polygenic basis for 
the variance in sex phenotype. This conclusion is further 
supported by the covariance in the proportion of males be- 
tween temperature treatments (experiment 2) and between 
the F1 and F2 families (experiment 3). 

Further support for polygenic variation in the primary sex 
ratio in T. californicus comes from the work by Egloff (1966) 
and from the selection experiments of Ar-Rushdi (1958). 
Egloff (1966) observed extrabinomial variation in the pri- 
mary sex ratio but did not distinguish between genetic and 
environmental effects. Ar-Rushdi (1958) selected the pro- 
portion of males for high and low values and succeeded in 
shifting the original proportion of males to 0.995 and 0.200, 
respectively. Unfortunately, Ar-Rushdi (1958) did not esti- 
mate realized heritabilities and his report is incomplete in 
several respects. For example, it is not clear whether he ruled 
out sex-specific mortality differences, how many generations 
of selection were done, and what sample sizes were used (Ar- 
Rushdi 1958). 

An essential aspect of our analyses is our use of the larval 
mortality correction. Following the example set by other sex- 
ratio workers (Bull and Vogt 1979; Conover and Kynard 
1981; Bull et al. 1982a) this protocol allows us to eliminate 
differential mortality of the sexes as an alternative expla- 
nation. Thus, in experiments 1 and 2 (but not experiment 3) 
we have conservative evidence that the observed results are 
caused by variation in the primary sex ratio. 
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FIG. 3. The correlation in the proportion of males between the F1 
and the F2 families. The proportion of males in each F2 family is 
weighted by the square root of the number of individuals in that 
family. Shown is the line of best fit, y = 0.152 + 0.580x. 

Assumptions of Our Heritability of Sex Tendency Estimates 

Our approach for estimating the heritability of sex ten- 
dency makes three important assumptions. The first is that 
all offspring from the same mother are full-siblings (Bull et 
al. 1982a; Roff 1997). This assumption is likely to be met, 
because sperm competition and multiple paternity do not oc- 
cur in Tigriopus (Burton 1985). 

The second assumption is that the covariance among rel- 
atives is the result of additive genetic effects. Violation of 
this assumption includes dominance, epistasis, maternal ef- 
fects, environmental effects, major genes, and sex-linked loci. 
With the exception of dominance and environmental effects 
(see below), we are unable to address these problems in the 
current study. 

Finally, as mentioned in the introduction, the analysis as- 
sumes that the genetic variation in the primary sex ratio is 
under zygotic control (Bull et al. 1982a; Bulmer and Bull 
1982). Our rationale for choosing the polygenic threshold 
model as a putative description of the sex-determining mech- 
anism in T. californicus was primarily based on reports of 
ESD in this species (Vacquier 1962; Vacquier and Belser 
1965; Egloff 1966; Chalker-Scott 1995; Voordouw and An- 
holt 2002). Although ESD mechanisms in no way preclude 
the presence of parental control (Bulmer and Bull 1982), the 
genetic analysis of these systems typically assigns respon- 
sibility to the zygote (Conover and Kynard 1981; Bull et al. 
1982a; Conover and Heins 1987; Lester et al. 1989; Janzen 
1992). 

Heritability of Sex Tendency in Tigriopus californicus 
Here we report the first heritability estimates of sex ten- 

dency in T. californicus. The mother-offspring heritability 
estimate (h2 = 0.31) is comparable to the full-sibling esti- 
mates from the fall assay (Table 2). From theory, we would 
expect the mother-offspring h2 to be lower than the full- 
sibling estimates (Falconer 1989). The mother-offspring co- 
variance is not affected by dominance and is less likely to 
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be influenced by maternal effects than the full-sibling co- 
variance (Falconer 1989). Error in the estimate of the 
mother's phenotypic value (sex tendency) should result in a 
conservative mother-offspring h2 (Roff 1986, 1997). 

We did not correct for larval mortality in experiment 3 and 
so it is possible that the mother-offspring h2 is inflated by 
sex-specific viability differences between families. However, 
the association between low heritabilities and low survivor- 
ship in experiment 2 (S15, S22; Table 2) argues against such 
a bias and suggests that larval mortality is random with re- 
spect to sex. 

The standard error of the mother-offspring h2 (+ 0.216) 
is more than five times larger than that of the combined full- 
sibling h2 (+ 0.040). This lack of precision is partly due to 
reduced sample size (n = 17) in the mother-offspring design 
and again because the estimate of the mother's phenotypic 
value is relatively imprecise (Roff 1986, 1997). In addition, 
the standard error may be large because each F2 family con- 
tains a mix of full-siblings and cousins (due to pooling) and 
this increases the variance in the phenotypic values of the 
offspring. 

In experiment 2, the families in the summer assay were 
obtained from field-captured females. In contrast, families 
from the fall assay were sampled from two populations that 
had been cultured under constant laboratory conditions for 
four to six generations. A more variable maternal environ- 
ment in the field may have lowered the full-sibling estimates 
in the summer assay, although other studies have found no 
consistent differences between field and laboratory estimates 
(Weigensberg and Roff 1996). More likely, the nonexistent 
h2 of the summer assay at 22?C was caused by the low sur- 
vivorship of nauplii (81.9%) in this replicate. 

As recommended by Roff (1997), experiment 2 demon- 
strates the importance of rearing offspring in separate cages 
to estimate the contribution of cage (clutch) to the total phe- 
notypic variance. Clutch and all the nongenetic components 
included therein (e.g., maternal age, maternal condition, par- 
ity, larval density, food levels) accounted for a significant 
proportion of the total variance in sex phenotype (Table 1). 
If we had pooled the clutches for each family, as is commonly 
done (Roff 1986, 1997; Mousseau and Roff 1989), the av- 
erage heritability of sex tendency (for the original data) would 
be 0.29 ? 0.068 (range = 0.27-0.31). This pooled estimate 
is higher than the nonpooled estimate (Table 2) because it 
includes a substantial nongenetic component of variation. 

Heritability of the Primary Sex Ratio Versus Heritability of 
the Sex Tendency 

Heritability of the primary sex ratio.-The early studies on 
heritable variation for the primary sex ratio typically treated 
this variation as being under parental control. The heritability 
of the primary sex ratio in most of these studies (all sex 
chromosome systems) was indistinguishable from zero (Fal- 
coner 1954; Edwards 1970; Bar-Anan and Robertson 1975; 
Foster and McSherry 1980; Toro and Charlesworth 1982; 
Hohenboken et al. 1988). Heritabilities in the primary sex 
ratio have now been reported in a parasitic wasp (realized h2 
= 0.15-0.17, Parker and Orzack 1985; parent-offspring h2 
= 0.05-0.15, Orzack and Gladstone 1994) and in populations 

of Drosophila mediopunctata (parent-offspring h2 = 0.41, 
Varandas et al. 1997; realized h2 = 0.20, Carvalho et al. 
1998) that have sex-linked segregation distortion. 

Heritability of the sex tendency.-The heritabilities of sex 
tendency have been reported in the map turtle (full-sibling 
h2 = 0.82, Bull et al. 1982a), the common snapping turtle 
(full-sibling h2 = 0.56, Janzen 1992), and tilapia (full-sibling 
h2 = 0.26, Lester et al. 1989). Both species of turtle exhibit 
temperature-dependent sex determination (TSD). The sex- 
determining mechanism is unknown in tilapia (Lester et al. 
1989). In addition, we calculated the heritability of sex ten- 
dency in the harpacticoid copepod Tisbe gracilis (full-sibling 
h2 = 0.29 ? 0.115) from a published dataset in the literature 
(Battaglia 1958). Volkmann-Rocco (1972) has suggested that 
sex in T. gracilis is determined by a multiple-factor system. 

In their study of a polychaete worm, Premoli et al. (1996) 
presented the polygenic threshold model in the introduction 
but subsequently estimated the heritability of the primary sex 
ratio (thereby implicitly assuming that clutch sex ratio was 
controlled by the parent). As it turned out, parental control 
seems more likely in this system because only the father had 
an effect on the sex ratio of the offspring (father-offspring 
h2 = 0.54, mother-offspring h2 = 0, Premoli et al. 1996). 

Bulmer and Bull (1982) pointed out that in natural pop- 
ulations, the heritability of sex tendency in systems with ESD 
is affected by variation in the relevant (sex-determining) en- 
vironmental factor. In turtles with temperature-dependent sex 
determination, the effective heritability (h2ff) was found to 
be an order of magnitude lower than the laboratory estimates 
(h2ff = 0.06, Bull et al. 1982b; h2ff = 0.05, Janzen 1992; see 
above for laboratory h2). The response of natural populations 
to environment-induced fluctuations in the primary sex ratio 
may therefore be limited (Bull et al. 1982a). 

Maternal Control in the Threshold Model: 
Whose Trait Is It? 

The naive dichotomy of maternal versus zygotic control 
breaks down in many polygenic/environmental systems of 
sex determination. In reptiles with TSD, mothers can influ- 
ence the sex of their offspring via nest choice (Bull et al. 
1988), thermoregulatory behavior (Robert and Thompson 
2001), maternal condition (Roosenburg 1996), and through 
the seasonal allocation of yolk hormones (Bowden et al. 
2000). Theory suggests that the genetic variation for these 
maternally expressed traits may be more important in shaping 
the evolution of the primary sex ratio than the sex tendency 
of the zygote (Bulmer and Bull 1982). 

G x E Interactions and Temperature-Dependent Sex 
Determination in Tigriopus californicus 

The primary sex ratio in T. californicus is influenced by 
temperature (Egloff 1966; Vittor 1971; Voordouw and Anholt 
2002), although the effect is not strong. Between 15?C and 
22?C, the proportion of males increases from 0.53 to 0.58 
(Voordouw and Anholt 2002). The adaptive significance of 
TSD in T. californicus, if any, is not known. 

The genetic correlations in sex phenotype across the two 
temperature treatments (15?C and 22?C) suggest that there 
are substantial genotype-by-temperature interactions. Ap- 
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proximately one-third of families increase the proportion of 
males in response to higher temperatures but the rest do not 
(Voordouw and Anholt 2002). Populations of T. californicus 
appear to consist of a mix of temperature-insensitive (GSD) 
and temperature-sensitive (TSD) genotypes. Similar systems 
have been detected in Menidia menidia (Conover and Kynard 
1981; Conover and Heins 1987). 

Cytoplasmic Inheritance of Sex Factors 

An alternative explanation for the variation in the primary 
sex ratio in T. californicus is cytoplasmic inheritance. Under 
cytoplasmic inheritance, sex is determined by intracellular 
parasites (or other selfish genetic elements) that distort the 
sex ratio toward the transmitting sex, usually the female (Bull 
1983). Theoretical models indicate that cytoplasmic sex fac- 
tors can eventually cause the extinction of the nontransmit- 
ting sex (Hamilton 1967; Hatcher et al. 1999) and extremely 
female-biased sex ratios have been found in natural popu- 
lations (Jiggins et al. 2000). 

Cytoplasmic inheritance has been reported in a number of 
crustaceans including Gammarus duebeni (Dunn et al. 1995; 
Dunn and Hatcher 1997; Kelly et al. 2001), terrestrial isopods 
(Bull 1983; Rigaud et al. 1997), and Orchestia gammarellus 
(Ginsburger-Vogel and Desportes 1979). Igarashi (1964) in- 
ferred a cytoplasmic mode of sex determination in Tigriopus 
japonicus after showing that the primary sex ratio in the F1 
offspring is exclusively determined by the maternal genotype. 
Igarashi (1964) only reared two generations and so his results 
could have been caused by maternal control of the primary 
sex ratio, nevertheless, his findings in T. japonicus have im- 
portant implications for the present study. 

In this study, the variation in the primary sex ratio in T. 
californicus may be under zygotic, parental or cytoplasmic 
control. For each mode of control, we expect a different pat- 
tern of covariance in the primary sex ratio among relatives. 
These patterns are outlined below. 

In the polygenic threshold model, parents make an equal 
genetic contribution to the sex phenotype of their F1 off- 
spring. In the absence of maternal effects, the father-offspring 
and the mother-offspring heritabilities are expected to be 
equal (Roff 1986). In contrast, if variation in the primary sex 
ratio is under maternal control the father-offspring herita- 
bility will be zero. However, the maternal grandparent-off- 
spring heritability is expected to be equal for the two sexes 
(grandmother vs. grandfather) because both contributed 
equally to the genotype of their daughters. Under maternal 
transmission of sex factors, the covariance in sex phenotype 
between males and their descendants (F1, F2, etc.) is expected 
to be zero. Future experimental designs need to distinguish 
between these alternative mechanisms (zygotic, parental, cy- 
toplasmic) of sex determination in T. californicus. 
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