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We present a new characterisation technique for atomic vapor cells, combining time-domain mea-
surements with absorption imaging to obtain spatially resolved information on decay times, atomic
diffusion and coherent dynamics. The technique is used to characterise a 5 mm diameter, 2 mm thick
microfabricated Rb vapor cell, with Ny buffer gas, placed inside a microwave cavity. Time-domain
Franzen and Ramsey measurements are used to produce high-resolution images of the population
(T1) and coherence (T2) lifetimes in the cell, while Rabi measurements yield images of the o_, 7
and o4 components of the applied microwave magnetic field. For a cell temperature of 90°C, the
T} times across the cell centre are found to be a roughly uniform 265 us, while the T times peak at
around 350 us. We observe a ‘skin’ of reduced 77 and T5 times around the edge of the cell due to the
depolarisation of Rb after collisions with the silicon cell walls. Our observations suggest that these
collisions are far from being 100% depolarising, consistent with earlier observations made with Na
and glass walls. Images of the microwave magnetic field reveal regions of optimal field homogeneity,
and thus coherence. Our technique is useful for vapor cell characterisation in atomic clocks, atomic
sensors, and quantum information experiments.

I. INTRODUCTION

The use of alkali vapor cells in atomic physics has a his-
tory extending back several decades [1, 2], and has led to
important applications in precision measurement [3, 4]
and quantum information [5]. Recent years have seen
great interest in newly developed miniaturised and mi-
crofabricated vapor cells, with sizes on the order of a few
millimeters or smaller. Applications include miniaturised
atomic clocks [6, 7], gyroscopes [8], and magnetometers
measuring both DC [9-12] and radio-frequency [13] fields.
As new applications, one of our groups has recently
demonstrated imaging of microwave magnetic fields using
a vapor cell [14, 15], and detection of microwave electric
fields has been reported in Ref. [16]. Thanks to micro-
fabrication, vapor cells have been miniaturised to a point
where spatially resolved information on their properties,
and on the external fields applied to them, is essential to
their characterisation and performance.

In this paper, we describe a new characterisation tech-
nique, applying time-domain Franzen [1], Ramsey [17],
and Rabi [18] measurements and absorption imaging [19]
to a microcell. Time-domain measurements in vapor cells
are currently experiencing a renaissance in interest [20].
Absorption imaging is well established in use with ul-
tracold atoms [19], providing single-atom sensitivity [21],
and micrometer spatial resolution [22], however its use
with room-temperature atoms is a relatively unexplored
area. We use these tools to characterise a microfabri-
cated vapor cell [7, 23] and a microwave cavity designed
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for compact vapor cell atomic clocks [24], obtaining spa-
tially resolved images of decay times in the cell and im-
ages of the microwave field applied to the cell.

This paper is organised as follows. In section II, we de-
scribe the experimental setup and features of our vapor
cell. In section IIT we introduce the Franzen, Ramsey,
and Rabi experimental sequences, and some basic mea-
surements using a photodiode for detection. We begin
section IV by describing our adaptation of absorption
imaging to vapor cells. We then present images of the
Ty and T, times, and of the atomic populations in the
optically pumped steady state. We investigate Rb-wall
collisions and describe the Tj relaxation by modelling
optical pumping, diffusion and collisional relaxation in
the cell, and finish section IV with polarisation-resolved
images of the microwave magnetic field amplitude. We
conclude, and discuss future directions, in section V.

II. EXPERIMENTAL SETUP AND INITIAL
CHARACTERISATION

A. Equipment and Setup

We use the microfabricated cell shown in Figure la.
The cell has a 5mm x 2mm internal diameter and thick-
ness, and contains natural abundance Rb and 6342 mbar
of Ny buffer gas [7]. The windows of the cell are glass,
and the side-walls are Si. The buffer gas pressure was
measured at 80°C from the line-shift induced on the 8’Rb
clock transition [7], using the coefficients provided in [25].
The cell is inserted into a microwave cavity [24], which is
tuned to have its resonance frequency at the 6.835 GHz
ground-state hyperfine splitting of 8’Rb. The cavity is
surrounded by a solenoid coil that provides a static mag-
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FIG. 1. (Color online) a) The microfabricated vapor cell used
in this paper, with glass windows and a silicon frame; b) The
8TRb D2 line. Due to Doppler and collisional broadening on
the optical transitions, the excited state hyperfine levels F’
are not resolved. Transitions between the Zeeman-split mpg
levels of the ground state hyperfine structure can be individ-
ually addressed by the microwave field. The three hyperfine
transitions used in this work (i = 1,4,7) are shown in dotted
blue; ¢) A double resonance spectrum, showing laser transmis-
sion through the cell as the microwave frequency is scanned.
Transmission is reduced whenever the microwave comes on
resonance with a hyperfine transition; d) The experimental
setup.

netic field of 35 uT, parallel to the direction of laser prop-
agation (see Figure 1d). The resulting 0.25 MHz Zeeman
splitting between transitions allows all seven 3"Rb hyper-
fine transitions to be individually addressed, as shown in
the double-resonance spectrum of Figure 1lc. A temper-
ature control system is used to heat the cell and actively
stabilise its temperature to within a few parts in 10%,
and an outer double-layer of u-metal provides magnetic
shielding. Except when otherwise noted, the cell tem-
perature was set to 90°C for all data presented in this
paper.

We use a grating stabilised diode laser emitting linearly
polarised light at 780 nm, frequency stabilised using sat-

urated absorption spectroscopy to the F =2 — F/ = 2,3
crossover peak of the 87TRb D2 line (5S1/2 — 5P3/2).
Doppler and collisional broadening ensure that the F' = 2
ground state is coupled to all of the F’ = 1,2,3 excited
state hyperfine levels (see Figure 1b). An acousto-optical
modulator (AOM), driven at 80 MHz, is used to pro-
vide switching with a rise time below 100 ns. A single
laser beam is used for both optical pumping [26] and ab-
sorption measurements on the atoms. Microwave signals
near 6.835 GHz are produced by a frequency generator
(HP8304B), and passed through a switch and an ampli-
fier before being coupled into the cavity.

B. Hyperfine (Microwave) Transitions

There are nine possible hyperfine transitions between
the 8"Rb ground states, shown in Figure 1b, three from
each mp level of FF = 1. Two degenerate pairs of tran-
sitions leave us with seven resonances, which we label
i = 1...7, in order of increasing frequency. We ad-
dress three (non-degenerate) hyperfine transitions in this
work: ¢ = 1, 4, and 7, or, using |F,mp) notation:
|17_1> — ‘23_2>7 ‘130> — |270>a and |17+1> — |2a +2>
These are transitions corresponding to o_, m, and o po-
larization components of the microwave magnetic field,
respectively. ¢ = 4 represents the ‘clock transition’, ex-
ploited in atomic clocks [27].

The hyperfine transitions are shown in Figure 1c as a
double-resonance spectrum [27]. The spectrum is pro-
duced by scanning the frequency of the microwave as the
laser illuminates the cell. For this measurement, both the
microwave and laser are continuously on. Whenever the
microwave comes onto resonance with a hyperfine tran-
sition, the optically pumped F' = 2 state is repopulated.
This results in a dip in the transmission of the laser,
which is recorded by a photodiode. The m-transitions
in Figure lc, ¢ = 2,4,6, are the strongest, as the mi-
crowave cavity is designed to operate in a mode where
the m-component dominates.

C. Experiment Sequences

In this paper we mostly use pulsed experiments to char-
acterize the vapor cell. In a typical sequence (see sec-
tion III), we first apply an optical pumping pulse to the
vapor that depopulates the F' = 2 state. It is followed by
microwave pulses that coherently manipulate the atomic
hyperfine state. Finally, we measure the optical density
(OD) in the F' = 2 state with a probe pulse of the same
frequency and intensity, but much shorter duration than
the optical pumping pulse, in order to minimise optical
pumping during the probe pulse. For incident and trans-
mitted probe intensities of Iy and I;, respectively, the OD
is defined as

OD = —1In(I;/Io). (1)
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FIG. 2. (Color online) Optical density of the cell as a function
of temperature. The theory curve has been produced using
the model of Ref. [28], modified to include pressure and Rb
dipole-dipole broadening. The theory has no free parameters.
An arrow marks 90°C, where all other presented data were
taken.

Detection is performed using either a photodiode (Thor-
labs DET10A /M), or absorption imaging on a CCD cam-
era (Guppy Pro F031B). Details on the two detection
methods are given in sections III and IV, respectively.

D. Optical Density as a Function of Temperature

The OD of the vapor in the cell is shown as a func-
tion of temperature in Figure 2. Transmission through
the centre of the cell of a 2 mm diameter, low intensity
(In < 600 uW /cm?) laser beam was measured with a pho-
todiode. In this case, no optical pumping or microwave
pulses were applied. The model described in Ref. [28],
modified to include pressure broadening due to the buffer
gas as in Ref. [29, 30] and broadening due to Rb dipole-
dipole interactions [31], is compared to the data. The
agreement is good considering that the theory has no
free parameters. In all of the following measurements,
the cell was operated at 90°C (marked by an arrow in
Figure 2), where the theory matches our data well.

III. TIME DOMAIN MEASUREMENTS
WITHOUT SPATIAL RESOLUTION

We use three sequence types in this work: Franzen [1],
Ramsey [17], and Rabi [18]. Franzen, or relaxation-in-
the-dark, sequences are all-optical, and are used to ob-
tain 77 times. Ramsey sequences provide both 77 and
Ty times. The Ty times refer to population relaxation
between all F' = 1 and F' = 2 sublevels, whilst the 75
times are specific for the particular hyperfine mp transi-
tion probed. Rabi sequences provide information about
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FIG. 3. (Color online) Cell OD response to a) Franzen, b)
Ramsey, and c) Rabi sequences, recorded using a photodiode.
Data is shown as blue dots, while the fitting curves (described
in the text) are in red. Note the different scale in (¢). The
insets show the laser and microwave sequences used. The OD
increases with laser dark time, as the hyperfine population
difference relaxes.

the microwave magnetic fields strengths applied to the
cell.

We performed a first characterisation of the cell using
a photodiode as the detector. When using the photodi-
ode, the transmission of the probe laser pulse is measured
10 us after its start, in order to accommodate the pho-
todiode response time. A laser intensity of ~ 5mW /cm?
was used in the measurements described in this section,
with the beam partially covering the cell. Scanning the
laser intensity from 0.1mW/cm? to 10mW /cm? pro-
duced no apparent variation in relaxation times. This in-
dicates that the small, constant amount of optical pump-
ing induced by the first 10 ps of the probe pulse does
not greatly affect the measured time constants. Unless
otherwise stated, uncertainties are taken from the 68%
confidence bounds of fitting to the data.

A. Franzen Measurements

We begin a Franzen sequence by optical hyperfine
pumping of the atoms for some milliseconds, depopulat-
ing the F' = 2 ground state and reducing the OD of the
cell [26]. The laser beam is then switched off with the
AOM, and the pumped population difference relaxes at a



rate 1/T). After a time dtgq,k, we measure the OD with
the probe pulse. Scanning dt ., allows us to observe the
hyperfine population relaxation and to determine T7.
Figure 3a shows data from an example Franzen se-
quence. We fit the following equation to the data:

OD=A-B eXp(_dtdark/Tl)’ (2)

where A, B, and T; are fitting parameters. This yields
T, = (244 £+ 6) pus. We neglect possible tensorial hyper-
fine relaxation, with different relaxation rates for differ-
ent mp states, as we observed no significant variation in
T1 when scanning the laser polarisation (which scans the
relative population of mp states after optical pumping).
The simple nature of the Franzen data and the fitting
equation results in fast fitting and robust 77 values.

B. Ramsey Measurements

In Ramsey sequences [17], we introduce two microwave
pulses between the pump and probe laser pulses of the
Franzen sequence. The first pulse creates a coherent su-
perposition of the two hyperfine mp states that are cou-
pled by the microwave. During the subsequent free evo-
lution of duration dtg, the atomic superposition state
accumulates a phase relative to the microwave local os-
cillator. The second microwave pulse converts this phase
into a population difference between the hyperfine states.
By scanning dtg, oscillations of the atomic population
are recorded. Each microwave pulse is nominally a 7/2
pulse, however variation in the microwave field across the
cell (see section IV) results in atoms experiencing a range
of pulse areas. For a given microwave power setting, the
nominal 7/2 pulse length is obtained by performing a
Rabi sequence using a broad laser beam that illuminates
the entire cell, and measuring the Rabi oscillation pe-
riod on a photodiode. The 7/2 length is then 1/4 of
this period. Ramsey sequences are robust to laser and
microwave field induced decoherence, as the majority of
the atomic evolution occurs in the dark, with the mi-
crowave and optical fields off. As such, they provide a
good measure of the T, time of the cell.

Figure 3b shows an example Ramsey sequence. The
microwave power at the input to the cavity was 29.8 dBm.
To record Ramsey oscillations in time, the microwave was
slightly detuned by ¢ from the i = 4 transition. Although
the data is only shown up to 500 us, Ramsey oscillations
are still clearly visible at evolution times past 1.2 ms.
The data is fit with the equation

OD = A — Bexp(—dtr/T})
+C exp(—dtr/Ts) sin(d dtg + ¢) (3)

Where A, B, C, ¢, Ty, T, and ¢ are fitting parame-
ters. The fit gives the two relaxation times as T} =
(245 £ 0.5) us and Tp = (322 +=4) pus. The T time is in
excellent agreement with that obtained from the Franzen
measurement. The exact detuning of the microwave from

resonance is given by the Ramsey oscillation frequency,
d = 27 x (135.764 &+ 0.006) kHz. The measured T is
specific to the clock transition. Tuning the microwave to
field-sensitive transitions (i # 4 in Figure 1), we see Ty
drop by a factor of two to three. This is primarily due
to dephasing introduced by inhomogeneities in the static
magnetic field.

C. Rabi Measurements

A Rabi sequence consists of a single microwave pulse
applied during the dark time between the laser pumping
and probe pulses [18]. The microwave pulse drives Rabi
oscillations between the two resonantly coupled mg sub-
levels of FF =1 and F = 2, at a frequency proportional
to the microwave magnetic field strength. This allows us
to use Rabi sequences to measure each vector component
of the microwave magnetic field [14, 15]. By tuning the
microwave frequency to transitions ¢ = 1, 4, and 7, we
are sensitive to the o_, m, and o4 components of the
microwave magnetic field, respectively. The magnitude
of the microwave magnetic field components is obtained
using the equations [14]

B7T = Q47 (4)

where (; is the Rabi frequency for oscillations on transi-
tion %.

An example Rabi sequence is shown in Figure 3c. The
microwave power at the input to the cavity was 27.8 dBm,
and the microwave frequency was tuned exactly to the
1 = 4 transition, having been calibrated using a Ramsey
sequence. Defining 71, the population difference lifetime,
and 75, the Rabi oscillation lifetime, the data is fit with
the equation

OD = A — Bexp(—dtmw/m1)
+C exp(—dtma /T2) SIn(Q dtmw + @), (5)

where A, B, C, ¢, 11, T2, and ) are fitting parameters.
We obtain 71 = (231 £ 9) us and 72 = (94 + 3) us. The
Rabi oscillation lifetime is significantly shorter than the
T5 time obtained from the Ramsey measurement, princi-
pally due to the sensitivity of the Rabi oscillations to
inhomogeneous dephasing induced by a spatially non-
uniform microwave field. On the ¢ = 4 transition, we
are sensitive to the 7 component of the microwave mag-
netic field, and so 24 = 27 x50.39+0.05 kHz corresponds
to B = 3.600£0.003 p'T. We observe a strong variation
in Q across the cell (see section IV). The Rabi data in
Fig. 3c was taken using a small diameter laser beam in
a section of the cell with a relatively homogeneous mi-
crowave magnetic field, corresponding to a maximised
T9.
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FIG. 4. (Color online) T} times as a function of temperature.
Error bars are 95% confidence bounds from the fitting. The
theory curve shows a calculation of T} using Eq. (6) with no
free parameters.

D. Temperature Dependence of Relaxation Times

Figure 4 shows Tj times for a range of cell tempera-
tures, obtained using Franzen sequences measured with
the photodiode. These are compared with a simple model
described in [1, 32], which includes the effect of Rb-Rb
spin exchange collisions, Rb-buffer gas collisions, atomic
diffusion and atom-wall collisions. Considering only the
lowest-order diffusion mode, the T3 time is calculated as

Ty =[(f +v¥)D +]7 (6)

Here, the diffusion coefficient is D = Dy Py/P, where Dy
is the diffusion coefficient at atmospheric pressure Py,
and P is the buffer gas pressure. For a cell length d and
radius R, v; = w/d, and p; is defined by the first root of
Jo(pu1R) = 0, where Jj is the Bessel function of the first
kind. The relaxation rate v = ysg + Ybufter accounts for
relaxation due to Rb-Rb spin exchange collisions [33] at a
rate vs g, and Rb-buffer gas collisions [34] at a rate Ypuffer-
The parameters of the model are temperature-dependent;
their values at 90°C are ysg = 1957871, Ypufrer = 10877,
and P = 65mbar. For Dy, we use an average of the
values reported in Refs [34, 35], corresponding to Dy =
0.22cm?/s at 90°C.

At low temperatures, relaxation is governed by Rb col-
lisions with the cell walls, with a rate proportional to
the diffusion coefficient D. As the temperature is in-
creased, Rb-Rb spin-exchange collisions rapidly come to
dominate, due to the Rb vapor density increasing almost
exponentially with temperature [28, 36]. There is good
agreement between our data and the theory, particularly
at spin-exchange dominated high temperatures.

IV. SPATIALLY RESOLVED IMAGING OF
RELAXATION TIMES AND MICROWAVE FIELD
STRENGTH

We now turn our attention to measurements using the
CCD camera. A single lens is used to create a 1:2 demag-
nified image of the cell. An ND filter is placed between
the vapor cell and camera to avoid saturation of the CCD.
As the camera does not have a mechanical shutter, the
optical pumping pulse hits the CCD as well. The elec-
tronic shutter of the camera opens with a delay of 12 us
after the end of the pumping pulse. While some residual
charges accumulated during pumping are visible on the
images, they can be compensated for by taking a dark
image as explained below. For the data presented in this
section, the laser intensity averaged over the 5 mm cell
diameter was set to 30 mW /cm? to obtain strong optical
pumping, which ensures a large signal amplitude. During
probing, on the other hand, optical pumping is undesired,
and a short probe pulse duration of 2.2 us was chosen.
The strong collisional and Doppler broadening of the op-
tical transition ensure that the transition is not strongly
saturated and the number of absorbed probe photons per
atom is of order unity. In an optimised setup, separate
laser beams could be used to avoid compromises between
optical pumping and probing performance.

Absorption imaging is a powerful technique that was
perfected in experiments with ultracold atoms to obtain
accurate images of atomic density distributions in a given
hyperfine state [19, 21, 22]. Here we apply this technique
to our vapor cell. In absorption imaging, a set of reference
and dark images is usually taken in addition to the image
with the atoms. This allows one to calibrate out spatial
variation of the probe laser intensity and stray light [19].
An important difference between absorption imaging of
cold atoms and a hot vapor is that the presence of the
atoms cannot be easily controlled in the vapor cell, i.e.
the vapor is always present in the laser beam path. How-
ever, we can still modify the experimental sequence be-
tween the different images in order to be able to extract
the relevant information from the observed variation in
optical density AOD.

We record four images to create an image of AOD: the
actual image (Iimage), taken after the entire sequence of
optical pumping, microwave pulses (for Rabi and Ram-
sey sequences), and probe pulse; a reference image (Iyef),
taken 10 ms after every actual image, with a probe pulse,
but without optical pumping or microwave pulse; a dark
image for the actual image (Iqark1), taken with a pump
pulse, but no probe or microwave pulse; and a dark im-
age for the reference image (Igark2), taken without any
pump, probe, or microwave pulse. The two dark images
are taken approximately once per day. The AOD image
is obtained by calculating

Iima e 1 ar
AOD = —Ip | “nege  darkd | (7)
Iref - Idark2

The absolute OD can then be determined by normalising
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FIG. 5. (Color online) Measured T7 and 75 times across the cell. The top panels show a) T} times obtained from the 1/e decay
time of a Franzen sequence (see text); b) 71 times obtained from fitting a Ramsey sequence, fitting uncertainty £1%; and c)
T, times obtained from the same Ramsey sequence, fitting uncertainty £4%. The bottom panels show radial profiles of each
image in the form of a two-dimensional histogram. The radial distance from the cell center is binned into 27.5 pm wide bins
for the Franzen data, and 38.8 um wide bins for the Ramsey data. Franzen 77 and Ramsey 77 and 7> times are binned into
0.99 us, 1.4 us, and 2.1 us wide bins, respectively. The T} profiles are compared to theory as described in section IV B. Close
to the walls, there is a significant decrease in 77 and 75 due to Rb-wall collisions.

to the unpumped value of OD = 1.1 at the cell temper-
ature of 90°C (see Figure 2). The use of reference and
dark images significantly reduces our sensitivity to short
and long term drifts in the imaging system and to spatial
variations of the probe laser intensity. Mechanical vibra-
tions proved to be a significant experimental challenge in
achieving reliable imaging. We were required to under-
take steps in order to minimise them, such as rigidising
mounting components.

After taking each image, we bin the CCD pixels. This
binning acts to reduce noise on the pixels and to reduce
the computational intensity of the fitting process. We
bin the simpler Franzen data into 3 x 3 blocks, and the
Ramsey and Rabi data into 7 x 7 blocks. Taking the
approximate 1:2 demagnification given by the imaging
lens into account, each of these 3 x 3 (7 x 7) pixel blocks
corresponds to 35 um x 35pum (82 pum x 82 pum) in the
cell. The spatial resolution of our imaging system is then
35 um for Franzen data, and 82 ym for Ramsey and Rabi
data. The expected size of the smallest features in the
atomic vapor, on the other hand, is given by atomic dif-
fusion through the buffer gas during the measurement
sequence, typically a few hundred pm (see section IV A
below). In the rest of this paper, we use ‘pixel’ to refer
to the 3 x 3 and 7 x 7 blocks.

A. Imaging Relaxation in the Cell

Figure 5 shows images of the T7 and T» times across the
cell, taken using both Franzen and Ramsey sequences.
For the Ramsey sequence, the microwave input power
to the cavity was 21.8 dBm, and the frequency was set
slightly detuned from the ¢ = 4 transition.

Two different methods have been employed to obtain
T1 times from the Franzen and Ramsey data. Each pixel
of the Ramsey data was fit using Eq. (3), yielding T3
and T, times with +1% and +4% fitting uncertainties,
respectively. Fitting each pixel of the Franzen data in
a similar way, using Eq. (2), yields essentially the same
T, image as obtained from the Ramsey data. However,
relaxation near the cell walls is not well-described by a
single exponential. The model presented in section IV B
defines T3 as the 1/e decay time of the hyperfine popu-
lation difference (Eq. (16)). The Franzen Tj image has
therefore been produced using this definition.

The bottom panels of Figure 5 show radial profiles of
the T7 and T, images. There is strong agreement between
the structure of the Franzen and Ramsey 77 images. The
relaxation rate is uniform across the centre of the cell,
with both Franzen and Ramsey 7} times around 265 us.
Franzen and Ramsey T} times drop away to around 80 us
and 100 us, respectively, at the cell edge, due to the
depolarisation of Rb atoms after collisions with the cell
walls. The 0.34 + 0.05 mm half-width of this ‘skin’ of
reduced relaxation times is determined by the distance
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state, obtained from Franzen data. The red data points in
the lower panel show the mean wuo for each radial position,
binned in 27.5 pm bins. The error of the mean is smaller than
the symbols. Note the change in scaling of the bottom axis at
r = 2 mm to magnify the region near the cell wall. The data
is compared to theory as described in section IV B. The fit of
Eq. (10) to the data near the cell wall is shown in solid blue.
The ‘theory’ and ‘analytic theory’ curves respectively model
uo with (Eq. (15)) and without (Eq. (14)) the inclusion of the
central dip in optical pumping efficiency, which was caused
by a Rb deposit on the front cell window.

Az an atom diffuses during the bulk relaxation time. A
simple estimate yields Ax = /DT = 0.31 mm, using the
measured bulk 77 = 265 us. More detailed modelling is
described in section IV B below. The shorter Franzen T}
at the cell edge is due to the definition of the 1/e time
that accounts for the multimode nature of the diffusional
relaxation. The T3 relaxation, shown in the right-hand
panels of Figure 5, also exhibits an outer ‘skin’ of reduced
relaxation times, with T, times around 130 us at the cell
edge. Unlike in the T3 profiles however, the bulk T3 times
are not entirely flat, rising up to around 350 us in the cell
centre.

The relaxation times obtained in the centre of the cell
are larger than the values obtained using the photodiode
in section III. Integrating over the images in Fig. 5a-c,
we get average Franzen and Ramsey 77 times of 176 us
and 221 pus, respectively, and an average Ramsey T time
of 269 us. The Franzen T3 time is more accurate, as it ac-
counts for the multimode diffusional relaxation near the
cell walls. The photodiode values lie between the cen-
tral and average image values, indicating that the pho-
todiode measurements averaged the relaxation time over
some partial fraction of the cell.

In addition to the relaxation times, the absorption im-
ages also provide information about the optical pumping

efficiency. We define the hyperfine population difference
between the F' =1 and F = 2 states as

T2

=12
“ 5/8°

(8)
where ns is the fraction of atoms in F' = 2. With this defi-
nition, u = 0 represents the unpumped equilibrium state
where all mp states are equally populated, and v = 1
corresponds to perfect optical pumping where the F' = 2
state is empty. The B fitting parameter for Franzen data
(see Eq. (2)) describes the amount the OD has changed
through optical pumping. Normalising by the unpumped
OD = 1.1 we obtain the hyperfine population difference
in the optically pumped steady state, ug = B/1.1. Fig-
ure 6 shows the image and radial profile of u( obtained in
this way. We observe a reduced pumping efficiency close
to the cell edge because of atom-wall collisions. In ad-
dition, there is a broad dip in pumping efficiency in the
centre of the cell. This is due to a deposit of Rb that had
developed on the front cell wall, partially blocking the
pumping light. We attribute the deposit to a small tem-
perature gradient on the cell. The deposit was present
when taking all of the imaging data. The robustness
of our Ty, T5, and microwave magnetic field measure-
ments is highlighted by the lack of correlation between
the image of ug in Figure 6, and the images presented in
Figures 5 and 7.

B. Modelling Relaxation in the Cell

We now describe a model for the hyperfine popula-
tion relaxation in the cell and compare it with our imag-
ing data. We begin by analyzing the optically pumped
steady state in Fig. 6. Using a simple 1D model based
on Ref. [37], we determine the probability that a Rb-wall
collision destroys the hyperfine polarisation. We then use
this probability in a 2D model valid throughout the entire
cell to describe the observed T} relaxation.

1. Depolarisation Probability of Rb-Wall Collisions

In Ref. [37], Grafstrom and Suter used evanescent-wave
spectroscopy to study optical pumping of Na vapor near a
glass wall. Using a simple model, they related the atomic
(mp)-polarisation at the wall to the depolarisation prob-
ability of atom-wall collisions. We adapt their model
to our case of hyperfine population relaxation between
states of different F' in Rb collisions with Si walls.

Close to the cell walls, the evolution of the hyperfine
population difference u can be described by a 1D diffusion
equation

0 0%u

au(r, t) = Dw —(C+Tp)u(r,t) +T,. (9)
The first term on the right-hand-side describes diffusion
of Rb atoms in the buffer gas. The second term describes



relaxation at a rate I' + I'y, where the bulk relaxation
rate I' = vsE + Youtter + V- includes the effect of Rb-Rb
spin exchange collisions (ysg) and Rb-buffer gas colli-
sions (Ypuffer). Relaxation due to collisions with the front
and back cell windows varies only slightly with r, and so
we include it as a constant rate «,. The optical pump-
ing rate I'), drives both relaxation in the second term
of Eq. (9) and optical pumping in the third term. The
steady-state solution to Eq. (9) is

ug(r) = oo — (oo —ur)explp(r — R)],  (10)

Tp

where us = g7 is the population difference far from
p

the walls, R is the cell radius, ug = ug(R) is the popula-

tion difference at the wall, and p = F‘;#. Wall colli-

sions produce a skin of reduced optical pumping near the
cell edge, with the skin thickness given by p~!. The 1D
model provides a good description of the behavior near
the wall for |r — R| < R and pR > 1, which is satisfied
in our experiment.

From the behavior of wug(r) near the cell wall, it is
possible to determine the probability e that a Rb-wall
collision destroys the atomic hyperfine polarisation [37].
Very close to the wall, on average half of the atoms have
just collided with the wall, and half are arriving from a
distance L = %/\ into the cell bulk, where A = 3.5 um
is the Rb mean free path in the buffer gas. Atoms from
the bulk carry an average polarisation u(R — L), which
is reduced to (1 — e)u(R — L) after the collision. Thus,
u(R) ~ 1(2—€e)u(R— L). Applying these considerations
to Eq. (10) and exploiting that uL < 1, we obtain

2 —
e o il —up) (11)
uRr + pL(too —ugR)

Figure 6 shows a fit of Eq. (10) to the measured wuq(r)
profile of the Franzen data (blue solid line). We only fit
to the data near the cell wall (r > 2.15 mm), where the
1D approximation is valid and the optical pumping rate
is approximately constant. The fit parameters are u =
(T£1)x10° m™!, ug = 0.3540.04, and us, = 0.8940.03.
Using these values in Eq. (11), we obtain a depolarisation
probability of € = 0.05£0.01. When we analyse the initial
state of the Ramsey data in a similar way (not shown),
we obtain € = 0.046 & 0.007, consistent with the Franzen
data. For comparison, Fig. 6 shows fits to the data where
€ was constrained to ¢ = 1 (purple) and € = 0.01 (green),
respectively. Both values are inconsistent with our data.

The value of € = 0.05 obtained from our data is surpris-
ingly small. It implies that the atomic hyperfine popula-
tion can survive of order e~! ~ 20 collisions with the Si
wall. Previous experiments with Na and Cs atoms near
glass walls have reported ¢ = 0.5 [37, 38]. Our experi-
ment differs not only in the measurement technique, the
atomic species, and the wall material, but also in that
we study relaxation between hyperfine states F' = 2 and
F =1, while the previous experiment [37] studied the re-
laxation of (mp)-polarisation within one hyperfine state.

A systematic error in our measurement would arise if the
images are clipped close to the cell wall, so that the ac-
tual location of the wall is at » > 2.5 mm. To make our
data consistent with e = 1, the location of the wall would
have to be shifted by > 63 um (more than two datapoints
in Fig. 6), which is not very likely given the spatial res-
olution of our imaging system. Moreover, we point out
that the surface properties of the interior cell walls are
not precisely known. A layer of adsorbed Rb atoms or
other residues on the Si walls could modify the collisional
properties. A systematic study of these effects would re-
quire a dedicated setup and is beyond the scope of the
present work. However, our measurements show that ab-
sorption imaging is a powerful tool for the investigation
of atom-wall collisions. The high spatial resolution opens
up many intriguing possibilities such as laterally pattern-
ing the surface to modulate the collisional properties.

2. Ti Relaxation: 2D Model

We now model Tj relaxation in the Franzen sequence,
considering the entire circular aperture of our cell. The
diffusion equation for circular symmetry reads

%u(r, t) = D%% <r6ug;’ t)> — (T +Tp)u(r,t) +T,.
(12)

From the above considerations on diffusion and atom-wall

collisions, we can derive the boundary condition

Ju
or

€/2

T T =0 (13)

which reproduces Eq. (11) when applied to Eq. (10). The
initial condition for modeling the Franzen sequence is
given by the optically pumped steady state solution of
Eq. (12) subject to the boundary condition Eq. (13),

B Io(pr) ) (
Io(uR) + Ii (uR) (2/€ — 1)pL /)’

uo(r) = Uoo (1 14)

where Iy and I are modified Bessel functions of the first
kind, and u, and p are defined as in the previous section.
In the following, we take ¢ = 0.05 as a fixed parameter
determined as described above.

Figure 6 shows ug(r) given by Eq. (14) for the same
parameters as in the previous section (blue dotted line).
While the solution is indistinguishable from the 1D model
close to the wall and matches the data well in this region,
there is a discrepancy in the cell center (r < 2 mm).
This is because we have so far assumed a spatially ho-
mogeneous optical pumping rate I';,, which was not the
case in the experiment. To model T} relaxation, we can
simply take the measured profile in Fig. 6 as the initial
condition for the dynamics described by Eq. (12). It can
be phenomenologically described by the function

ug(r) = up(r) — % [cos (7‘1’%) + 1] . (15)



The additional term has been chosen such that it does
not affect the boundary condition Eq. (13) and is thus
consistent with the same value of € as ug(r). The factor
ko describes the reduced pumping efficiency in the cell
center. Our data is well described by '(r) using ko =
0.28 (black solid line in Fig. 6).

We model relaxation in the dark by setting I', = 0 at
t > 0 and numerically solving Eq. (12) with the initial
condition Eq. (15) and the boundary condition Eq. (13).
At each radial position, we define T; as the time taken
for u to decay to 1/e of its initial value:

u(r,Ty) = éu(n 0). (16)

In the limit where the temporal decay of u can be de-
scribed by a single exponential, this definition is identical
to that used in the fits of section III. The simulated and
measured T3 profiles are compared in the bottom panels
of Fig. 5. We set I' = 3900s~! in order to match the the-
ory curves with the observed T} values in the centre of the
cell. The central dip in optical pumping efficiency results
in 73 > I'"! in the cell center due to the diffusive influx
of atoms from neighbouring regions with higher optical
pumping, partially offsetting relaxation. The agreement
of our model with the data is reasonable. In particular,
the width of the skin of reduced T3 times at the cell edge
is reproduced well. However, the transition from the cell
bulk to the cell edge is sharper in the data than in the
model.

C. Imaging the Microwave Field

Figure 7 shows images of the o_, m, and o compo-
nents of the microwave magnetic field, obtained using
Rabi measurements on transitions ¢ = 1, 4, and 7, re-
spectively. The bottom panels show the corresponding
decay times of the Rabi oscillations (72). The microwave
frequency was calibrated using Ramsey sequences, and
tuned exactly to resonance for each transition. The mi-
crowave power at the input to the cavity was 26.8 dBm.
Each pixel was fit using Eq. (5), and the microwave mag-
netic field strength was then calculated using Eqs. (4).

The principal component of the cavity microwave mag-
netic field is the 7 component, with a strength more than
3 times that of the ¢ components. The dominance of the
7 component follows from the cavity design [24, 39]. The
presence of the o components is not unexpected, as we
are using a much smaller vapor cell than the one the
cavity was designed for, and both the cavity tuning and
field geometry are strongly dependent upon the dielectric
filling provided by the glass and silicon cell walls. This
non-optimal dielectric charging of the cavity is likely, in
addition, to be the reason for the relatively high inhomo-
geneity measured for the microwave field. Such inhomo-
geneities are undesirable for most applications of the cav-
ity, but here they aid in the demonstration of our imag-
ing technique and its capabilities. It is also possible that

the inhomogeneities are caused by some microwave field
radiated directly from the loop coupling the microwave
into the cavity: while the 6.8 GHz microwave frequency
is below cutoff with respect to the outer cylinder of the
cavity, in these images we are using an input microwave
power several orders of magnitude above the -30 to -10
dBm typically used for clock applications.

The lifetime, 7o, of the Rabi oscillations is significantly
shorter than the 75 time, principally due to inhomo-
geneities in the microwave magnetic field [2]. This can
be seen in Figure 7, where the 7 time is inversely cor-
related with the magnitude of the microwave magnetic
field inhomogeneity, which in turn is linked to the field
strength. We see that this effect is strongest for oscil-
lations on the ¢ = 4 transition, corresponding to the 7
component of the field. The 75 values on this transition
are only 20-40 us across much of the cell. In the field
minimum of each transition, where inhomogeneities are
smallest, 7o is around 150 us.

As a higher field strength also drives faster oscillations,
the number of visible oscillations is a measure of the qual-
ity of the coherent driving. We find that this number re-
mains roughly constant across most of the images, with
1-2 oscillations visible over the 75 time. The high 75 re-
gion in the upper right of the 7 image (Figure 7.b), with
79 values around 150 pus, is an exception: In this region,
more than 5 oscillations are visible. It is not clear why
there is such a local increase in the number of visible os-
cillations, as this is not seen in the high 75 regions on the
o transitions.

Figure 8 shows examples of Rabi oscillations for two
representative pixels from the 7 image (marked by white
dots in Figure 7). The top panel shows a pixel from the
high 75 region, (z = 3.64mm, y = 1.19mm), while the
bottom panel shows a pixel with low 72, (z = 1.10 mm,
y = 3.98mm). Atoms in the high 75 region can be seen
to undergo many more Rabi oscillations than atoms in
the rest of the cell.

The images show that different hyperfine transitions
can have quite spatially different regions of optimal 75,
depending on the geometry of the applied microwave
field. The strong spatial variation in 75 highlights the
importance of our technique for cell and cavity charac-
terisation, in particular for high precision devices such as
vapor cell atomic clocks.

V. CONCLUSIONS AND OUTLOOK

We have used time-domain spatially resolved optical
and microwave measurements to image atomic relax-
ation and the polarisation-resolved microwave magnetic
field strength in a microfabricated Rb vapor cell placed
inside a microwave cavity. The population relaxation
times were measured to be approximately uniform across
the cell centre, with a value at 90°C of T} = 265 us,
whilst coherence times in the cell centre peaked at around
Ty = 350 us. Depolarising collisions between Rb atoms
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FIG. 7. (Color online) Top: Rabi sequences have been used to obtain images of the a) o_, b) 7, and ¢) o+ components of the
microwave magnetic field. Bottom: Images of the corresponding Rabi oscillation lifetimes, 7. The white dots on the m images
show the approximate locations of the pixels examined in Figure 8.
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FIG. 8. (Color online) Representative pixels of the 7 images
in Figure 7. Fitted data is shown for pixels in a) the high 7o
region (z = 3.64mm, y = 1.19mm) and b) the low 72 region
(r = 1.10mm, y = 3.98mm). Atoms in the high 7> region
perform an unusually large number of Rabi oscillations.

and the Si cell walls resulted in T3 and 75 times around
80 us and 130 us near the cell walls, respectively. Dif-
fusion of these atoms lowered relaxation times within
0.7mm of the cell wall.

The relaxation times at the cell edge provide spatially
resolved information on the interactions of Rb atoms with

the Si cell walls. Our data suggest that Rb-Si collisions
are not completely depolarising, agreeing with previous
work on Na-glass collisions. It would be interesting to
study these interactions in further detail on a dedicated
setup. This aspect of our technique could be particularly
useful in the characterisation of wall coatings in coated
cells.

Images of the cavity microwave magnetic field show
significant spatial inhomogeneity in each of its three vec-
tor components, o_, m, and o4, due to perturbations
to the cavity introduced by the dielectric cell material.
For each vector component, we can identify the resulting
region maximising the number of Rabi oscillations, and
hence the region of optimal coherent manipulation.

Our measurement technique is fast, simple, and
produces high resolution images for vapor cell and
microwave-device characterisation. It is of particular
interest for characterising cells in miniaturised atomic
clocks [40] and sensing applications [8, 11, 14]. It is also
of interest for characterising the cell and cavity prop-
erties in larger and high-performance vapor cell atomic
clocks [4, 41, 42].
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